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Epileptic seizures occur due to disorder in brain functionalitywhich can affect patient’s health. Prediction of epileptic seizures before
the beginning of the onset is quite useful for preventing the seizure bymedication.Machine learning techniques and computational
methods are used for predicting epileptic seizures from Electroencephalograms (EEG) signals. However, preprocessing of EEG
signals for noise removal and features extraction are twomajor issues that have an adverse effect on both anticipation time and true
positive prediction rate.Therefore, we propose amodel that provides reliable methods of both preprocessing and feature extraction.
Our model predicts epileptic seizures’ sufficient time before the onset of seizure starts and provides a better true positive rate. We
have applied empirical mode decomposition (EMD) for preprocessing and have extracted time and frequency domain features for
training a prediction model. The proposed model detects the start of the preictal state, which is the state that starts few minutes
before the onset of the seizure, with a higher true positive rate compared to traditionalmethods, 92.23%, andmaximumanticipation
time of 33 minutes and average prediction time of 23.6 minutes on scalp EEG CHB-MIT dataset of 22 subjects.

1. Introduction

Thedisease in which patients suffer seizures caused by a brain
functionality disorder is called epilepsy [1]. While more than
fifty million people around the world are diagnosed with
epilepsy [2], in the United States, about three million patients
have been affected by epilepsy. Epilepsy is the third most
common brain disorder [3]. Meanwhile, there are several
possible causes of epilepsy, one of which is a molecular
mutation, which results in irregular neuronal behavior or
migration of neurons. Although the main cause of epilepsy
remains unknown, early diagnosis can be useful for treating
epilepsy. Epilepsy patients can be treated with drugs or
surgical procedures [4]. However, thesemethods are not fully
effective. Unfortunately, seizures that cannot be completely
treated medically limit the active life of the patient. In these
cases, patients cannot independently work and do some
activity. This leads to social isolation of individuals and
economic difficulties.

Early prediction of epileptic seizures ensures enough time
before it actually occurs; it is very useful because the attack
can be avoided by the drug. Epileptic seizures have four
different states: the preictal state, which is a state that appears

before the seizure begins, the ictal state that begins with the
onset of the seizure and endswith an attack, the postictal state
that starts after ictal state, and interictal state that starts after
the postictal state of 1st seizure and ends before the start of
preictal state of consecutive seizure. Figure 1 shows different
input states of three different channels. In addition, seizures
can be predicted by detecting the beginning of the preictal
state.

Detecting the appearance of preictal state [5] predicts
the seizure. Therefore, the purpose of our investigation is to
detect the appearance of preictal state for epileptic seizures.
Machine learning models are used to predict epileptic
seizures. These machine learning models include EEG signal
acquisition, signal preprocessing, features extraction from
the signals, and finally classification [6] between different
seizure states. The objective of the prediction model with
machine learning was to detect preictal state’s sufficient time
before seizure onset starts [7]. However, enough time for the
predictive preictal state of the gland andmaximum sensitivity
are important, and they remain as a performance issue in the
prediction of epileptic seizures.

Preprocessing and feature extraction from EEG signal
have great affect in maximizing prediction time and true
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Figure 1: States of epileptic seizure.

positive rate (TPR). Preprocessing is performed for remov-
ing noise from the signals and to increase the signal-to-
noise ratio (SNR). Many researchers [8] have discussed
preprocessing steps that include converting multiple chan-
nels of EEG signals into a single surrogate channel, and
then filters have been applied to increase the signal-to-
noise ratio (SNR). EEG signals that have been acquired by
using multiple electrodes can be converted into surrogate
channel by using averaging filter, common spatial filtering
(CSP), large Laplacian filter, and optimized spatial pattern
(OSP) filtering [8]. Many researchers have also discussed
extraction of linear and nonlinear features for prediction of
epileptic seizures. Features that distinguish between preic-
tal and interictal states include autoregressive coefficients,
relative power from EEG signals of different frequency
bands, complexity, Hjorth parameters [9], zero crossing,
Lyapunov exponent [10], and spectral and statisticalmoments
[11].

Finally, as we have observed in the literature [12–16]
that there is no machine learning model that provides
an absolutely reliable method for both preprocessing and
features extraction, we propose an effective and reliable
machine learning model for prediction of epileptic seizures.
Our model focuses on preprocessing and features extraction
from EEG signals. We have convertedmultiple channels EEG
signal into the surrogate signal, and then empirical mode
decomposition (EMD) [17] has been applied for increasing
signal-to-noise ratio (SNR). We have extracted multiple
features including entropy, approximate entropy, Hjorth
parameters, spectralmoments, and statisticalmoments. It has
been observed that both statistical and spectral features give
increased sensitivity between interictal and preictal states.
Support Vector Machine (SVM) [18] has been used as a
classifier for classification between preictal state and interictal
state.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 explains the proposed
methodology. Section 4 reports and compares the experi-
mental results. Section 5 concludes the paper and mentions
future work.

2. Related Work

In the previous section, we have discussed four states of
seizures. Among these four states, ictal state and preictal state
are very useful for predicting epileptic seizures.The ictal state
can be used to classify seizure and nonseizure EEG signals.
The preictal state is another useful state of epileptic seizures.
It begins several minutes before the onset of a seizure, and
it ends with the start of ictal state. Many researchers [12–16]
tried to detect the beginning of the preictal state by using
EEG signals. However, only a few have reliably detected the
preictal state of epilepsy. Preprocessing of the EEG signal to
increase signal-to-noise ratios and features extraction play an
important role in reliable prediction of epileptic seizures.

The combination of multiple unique features into a fea-
ture vector can be used to predict the preictal state of epileptic
seizures. Rasekhi et al. in [12] have proposed an algorithm
for seizure prediction with the help of univariate linear
features. In [12], the authors used only six EEG channels
in their proposed model and extracted 22 univariate linear
properties.Thus, a 132-dimensional feature space is created. It
was assumed that preictal time starts 10 to 40 minutes before
the ictal state with a difference of 10 minutes. Prediction
of epileptic seizures is considered by classifying a binary
class that classifies test data into either preictal state or ictal
state. On average, the prediction sensitivity after applying this
algorithm is 73.90%.

In [12], the authors used Support Vector Machine as a
classifier to classify the preictal and ictal states of EEG signals.
The authors have used extracted univariate linear features
using the window size of seconds in their algorithm. In the
second step, preprocessing is done, and finally a decision was
made on EEG signal, following certain regularization. Three
EEG channels have been extracted by placing electrodes
on the patient’s scalp focusing on seizure, while the three
electrodes are located outside the confiscated surface. The
data of the acquired EEG signals are converted into segments
of a nonoverlapping window having the size of 5 seconds.
After converting this data to the 5-second segments, the
Butterworth filter [19] was used to reduce the noise effect.

The authors in [12] extracted the first four statistical
moments as features. All these four features measure sim-
ilarity, variance, and symmetry of consecutive samples of
EEG signals. In order to deal with outliers, the authors have
standardized all the features, so there will be no outliers.
Although the noise has been reduced from signals, still
there was some noise in the EEG signals, as the brain
is a nonstationary source for recording the EEG signals.
Smoothing is performed on the EEG signals to eliminate the
noise.

It has been observed in literature that univariate linear
features have better sensitivity performance for epilepsy data
of EEG signals. Teixeira et al. in [13] have proposed a
model for prediction of epileptic seizures by choosing only
six channels of EEG signals and have extracted 22 linear
univariate features for each channel.The overall feature space
expands to 132 dimensions. In [13], the authors have used
only six electrodes for EEG data acquisition.Themain reason
behind this minimum electrode selection is to set free the
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Table 1: Comparison of machine learning models for prediction of epileptic seizures.

Method Number of subjects Number of seizures EEG channels used Number of features Average sensitivity (%) FPR (ℎ−1)
Rasekhi et al. [12] 10 86 6 22 71.97 0.17
Teixeira et al. [13] 224 87 6 22 73.08 0.33
Bandarabadi et al. [14] 24 87 6 12 73.98 0.06
Zandi et al. [16] 20 86 18/23 18/23 88.34 0.155
Gadhoumi et al. [15] 6 86 2/3 3 88 0.15

patient fromwearing a large number of electrodes, as patients
are often unwilling to wear so many electrodes on their
scalp due to discomfort. Therefore, in order to give comfort
to the mind, only six channels have been acquired and
used for prediction purpose. The authors have selected these
electrodes by using three different approaches.

Onemethod is by randomly selecting six EEG electrodes,
while the second method is to choose six channels from
electrodes which have been placed on the scalp area from
where seizures originate. The authors in [13] have used notch
filter [20] for smoothing as preprocessing step for noise
removal. They have also tested their model for prediction by
varying multiple combinations of electrodes and also with
four different preictal state durations. They have used three
classifiers for classification and have approximately predicted
every seizure.

After selecting suitable features, training data is fed into
Support Vector Machine for training the classifier, and then
test data is passed for determining classification accuracy
and sensitivity. The authors have observed sensitivity of
75.8% of detecting the seizure, meaning that, out of 87, they
have successfully detected 66 seizures. The authors have
also proposed that performance can be improved by further
reducing features set.

In [14], Bandarabadi et al. have proposed an algorithm to
predict epilepsy seizures that can extend the life of epilepsy-
affected patients.They have extracted spectral power features,
and after suitable selection of features, features are passed
into Support Vector Machines for classification. They have
observed sensitivity of 75.8%; it means that their classifier has
predicted 66 seizures out of total 87. They have concluded
that, by applying these methods, after reducing proposed
features subset can improve seizure prediction performance.

In [15], the authors have used wavelet method for pre-
diction of seizures. They have extracted features including
wavelet energy and wavelet entropy. Two or three channels
have been selected for testing purposes on a dataset of six
patients. Sensitivity has been reported as 88% with average
anticipation time of 22 minutes.

Zandi et al. [16] have also proposed amodel for predicting
seizures using scalp EEG signals on the basis of zero crossings.
The authors in [16] have computed the histogram of all
intervals in a moving average window and have selected
values from particular bins for observations. Once the whole
process is completed, last 5 seconds of observations are
compared with different reference sets of points, containing
preictal and interictal states. They have measured a similarity
index on the basis of variational Bayesian Gaussian mixture
[21] model of EEG data.

A combined similarity index is calculated aftermeasuring
the similarity index on the basis of a particular threshold. An
alarm is generated upon indication of the start of the preictal
state of the seizure which predicts the seizure. The authors
have applied their model for epileptic seizure prediction
on a dataset of 20 subjects including 86 seizures. They
have observed sensitivity of the model of 88.3%. Average
anticipation time in their case, that is, the time of detecting
preictal state before onset of the seizure, has been observed
to be 22.5 minutes. Table 1 shows a comparison of various
machine learning models on the basis of the number of
subjects, number of seizures, type of EEG data, sensitivity,
and false positive rates.

It has been observed in researches of Table 1 that there is
no reliable method for selection of channels from EEG sig-
nals, and no reliable preprocessing method has been devised.
Therefore, keeping in mind the fact that preprocessing of the
EEG signals can improve prediction sensitivity and average
anticipation time, we propose an effective machine learning
method for epilepsy prediction.

3. Proposed Method

The preictal state is very useful for seizure prediction, as it
starts few minutes before the seizure. This made it possible
for us to be able to predict epileptic seizure, if we successfully
detect the start of preictal state. The aim of this research is
to predict epileptic seizure by detecting the start of preictal
state’s sufficient time before the ictal state or onset of seizure
starts. Early prediction [22] helps patients, as medication can
be done by the doctors to prevent the seizure. Due to this
medication, the patient can now perform his or her routine
activitieswithout any interference from seizures. After critical
considerations of these states, we have proposed a model
to detect the start of the preictal state. However, EEG data
acquisition by placing electrodes on the scalp of the patient is
out of the scope of our research. Consequently, we have used
a publically free online available dataset of CHB-MIT [23].
The dataset has been acquired by placing 23 electrodes on the
scalp of 22 subjects. We have performed preprocessing of the
data in two stages; in the first stage, 23 channels EEG signals
are converted into a surrogate channel, which is a single signal
to improve the SNR. In the second stage of preprocessing,
empirical mode decomposition (EMD) has been applied to
the surrogate channel for further increasing SNR.

It is pertinent to know that the surrogate channel of
EEG signal can be obtained by applying either averaging
filter, large Laplacian filter, or common spatial pattern (CSP)
filtering [8]. Since we do not have any information about the
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Figure 2: Flowchart for epilepsy prediction.

reference electrode, among the 23 electrodes, large Laplacian
filter is not possible, as it requires information about reference
electrode for assigning maximum weight to it. We have
applied averaging filter and CSP to obtain surrogate channel
and have concluded after comparing results that CSP gives
increased SNR; CSP also increases within a class variance of
signals.

We have performed the empirical mode decomposition
(EMD) after converting into the surrogate channel to increase
the signal-to-noise ratio. Empirical mode decomposition
decomposes the surrogate channel EEG signal into its
oscillatory functions, known as Intrinsic Mode Functions
(IMFs). Noise affects high-frequency components; therefore,
we have taken only last four IMFs having low frequencies
and contained more information about seizures. These four
IMFs are combined, and the features have been extracted for
classification.

Features have been extracted in both time and frequency
domains. Statistical features have been extracted in a time
domain, whereas spectral features have been extracted in a
frequency domain. We have compared three classifiers in
terms of sensitivity, and Support Vector Machine has been
selected as it gives greater sensitivity; therefore, classification
is done by using Support Vector Machines in order to
distinguish testing data between preictal and interictal states.
Figure 4 shows a flowchart that illustrates our proposed
method.

Figure 2 shows our proposed flowchart. Meanwhile, data
acquisition has been performed in the first step by placing
electrodes on the scalp of subjects, and data is stored in
edf format [24]. edf data is converted into MATLAB [21]
files having the extension ∗.mat with the help of MATLAB
function called “edfread.” Figure 3 shows plots of different
channels of EEG signal for a single session. Most of the
sessions are of one-hour recordings, as data has been acquired
using 23 electrodes and the sampling rate of 256Hz. Noise
has been added in 23 channels of EEG signals during the
recording of these signals; therefore, in order to increase the
signal-to-noise ratio (SNR) of the signal, we have to convert
it into a surrogate channel by applying common spatial
pattern (CSP) filtering. In the next step, empirical mode
decomposition (EMD) is applied on the surrogate channel
EEG signal for further increasing SNR. Statistical features in
time domain and spectral features in frequency domain have
been extracted.

3.1. Surrogate Channel. CHB-MIT dataset has been acquired
by placing 23 electrodes on the scalp of subjects; therefore 23

channels have been obtained. These channels contain noise
that affects prediction directly; therefore, we have to convert
these channels into a surrogate channel with increased SNR.
The multiple channels signal can be converted into a single
surrogate channel by applying common averaging filter, large
Laplacian spatial filter, and common spatial pattern (CSP)
filter.

3.1.1. Averaging Filter. We have applied a simple averaging
filter on the multiple channels EEG single to convert it into
the surrogate channel. This filter computes the average of
all channels to form a single-channel EEG signal. Although
the surrogate channel obtained after applying this filter has
more signal-to-noise ratio than multiple channels signal,
there is still some noise in it. Figure 4 shows plot of surro-
gate channel EEG signal obtained after applying averaging
filter.

3.1.2. Large Laplacian Filter. Following our observation, aver-
aging filter has not given better results. Large Laplacian filter
also gives increased signal-to-noise ratio and can be used for
surrogate channel [25]. In our case, CHB-MIT dataset has
no information about reference electrode, and, without this
information, we cannot apply large Laplacian filter.

3.1.3. Common Spatial Pattern Filter. Common spatial pat-
tern (CSP) filter [26] can be used to convertmultiple channels
signal into the surrogate channel, as it gives increased signal-
to-noise ratio. It also performs better in case of EEG signals
as it increases SNR and the variance interval between two
class variables. If𝑋1 and𝑋2 are the signals from two different
epilepsy states, that is, preictal state and interictal state, then
you get 𝑅1 and 𝑅2 when you divide the squares of signals by
the trace in (1) and (2), respectively.

𝑅1 = (𝑋1𝑋1𝑡)
trace (𝑋1𝑋𝑡1) (1)

𝑅2 = (𝑋2𝑋2𝑡)
trace (𝑋2𝑋𝑡2) (2)

𝑅 = 𝑅1 + 𝑅2 (3)

[Evec,Eval] = eig (𝑅) . (4)

𝑅1 and 𝑅2 are added in (3) and eigenvalue decomposition
is performed in (4) which results in eigenvalues Eval and



Computational and Mathematical Methods in Medicine 5

Channel 1 Channel 2 Channel 3

Channel 4 Channel 6 Channel 3

Channel 7 Channel 8

0 5 10
Samples

Channel 3

−1000

0

1000
A

m
pl

itu
de

−500

0

500

A
m

pl
itu

de

−500

0

500

A
m

pl
itu

de

−500

0

500

A
m

pl
itu

de

−1000

0

1000

A
m

pl
itu

de

−500

0

500

A
m

pl
itu

de
−1000

0

1000

A
m

pl
itu

de

−500

0

500

A
m

pl
itu

de

−1000

0

1000

A
m

pl
itu

de

5 100
Samples

5 100
Samples

5 100
Samples

5 100
Samples

5 100
Samples

5 100
Samples

5 100
Samples

5 100
Samples

×10
5

×10
5

×10
5

×10
5

×10
5

×10
5

×10
5

×10
5

×10
5

Figure 3: Single channel EEG signal.
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Figure 4: Surrogate channel after applying averaging.

eigenvector Evec. Suppose that𝐷 is a matrix that contains all
diagonal elements of eigenvector.

𝑤 = √𝐷−1Evec𝑡 (5)

𝑆1 = 𝑤𝑅1𝑤𝑡 (6)

𝑆2 = 𝑤𝑅2𝑤𝑡 (7)

[𝐵,𝐷] = eig (𝑆1, 𝑆2) . (8)

Weight 𝑤 is computed in (5) and 𝑆1 and 𝑆2 are computed in
(6) and (7). Eigenvalue decomposition is performed in (8) to
get eigenvector 𝐵 and eigenvalues 𝐷. These values are sorted
in descending order in order to get a filter in the following
equation:

Filter = 𝛽𝑡𝑤. (9)

Equation (9) shows coefficients of common spatial pattern
(CSP) filter. We have applied CSP on all sessions to get
surrogate channel EEG signal in order to get increased SNR
and high variance between classes of preictal and interictal
states.

Figure 5 shows a plot of EEG signal after applying CSP for
converting it into a single surrogate channel. The plot shows
that this surrogate channel indicates the start of preictal state.

3.2. Empirical Mode Decomposition (EMD). In empirical
mode decomposition (EMD) [27], a time domain signal is
broken into a number of oscillatory functions known as
Intrinsic Mode Functions (IMFs). This process of decom-
position of signal into multiple IMFs while remaining in
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Figure 5: Surrogate channel after applying CSP.

time domain is comparable with wavelet decomposition and
Fourier transform. EMD is a very useful process for analyzing
signals that are nonstationary and not linear.When empirical
mode decomposition is applied on surrogate channel EEG
signal, it filters out noise from the original signal. High-
frequency components contain noise, whereas low frequen-
cies contain original signal and information about seizures.

There are different frequency components that are
obtained as a result of applying empirical mode decomposi-
tion and IntrinsicMode Functions (IMFs). Multiple IMFs are
obtained depending upon the nature of EEG signal. Mean-
while, there is an important fact about this decomposition,
where the length of each Intrinsic Mode Function is equal to
the length of the surrogate channel signal. We have applied
EMD on surrogate channels of each session for all subjects
in MATLAB. We have analyzed different IMFs and have
observed that the last four IMFs obtained after applying
EMD containmaximum information about states of seizures.
Therefore, we have combined the last four IMFs, which are
used for feature extraction. Every Intrinsic Mode Function
must follow the following conditions: (1)The total peak values
and the count of zero crossing should ideally be the same or
have a maximum difference of 1. (2) At any given point of
signal, the average envelope value is defined by local maxima,
and envelope defined by local minima is zero. Assume that𝑥(𝑡) is the given signal; all maxima and minima can be
obtained by Algorithm 1.

3.3. Selecting a Nonoverlapping Window. CHB-MIT dataset
has been sampled at 256Hz; therefore we have selected a
nonoverlapping window of 1 second consisting of 256 sam-
ples. Selection of window has been done for downsampling
the data in order to increase processing speed.

3.4. Feature Extraction. Several features have been extracted
in this work, but spectral and statistical moments perform
better in terms of both anticipation time and sensitivity.
Therefore, we have extracted the first four statisticalmoments
and the three spectral moments [28].

3.4.1. Statistical Moments. Four statistical moments obtained
from IMFs are quite useful in classification of different

Input: Signal 𝑥(𝑡)
Output: Intrinsic Mode Function (IMF)
Process:
(1) Up sample betweenminima and maxima, and

generate envelopes 𝑒𝑙(𝑡) and 𝑒𝑚(𝑡)
(2) Compute local mean 𝑎(𝑡) = 𝑒𝑚(𝑡) − 𝑒𝑙(𝑡).
(3) Extract ℎ1(𝑡) = 𝑥(𝑡) − 𝑎(𝑡)
(4) Apply two conditions on ℎ1(𝑡) to determine if it

is valid imf
(5) Repeat above steps till valid IMF is obtained.

Algorithm 1
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Figure 6: Mean of surrogate channel EEG signal.

states of epileptic seizures. These statistical moments give
information of the distribution of samples including variation
between samples, symmetry, and peaks. Analysis of statistical
moments of IMFs of seizure andnonseizure sessions obtained
after applying EMD shows that this information can be easily
classified. If 𝑥𝑖 represents combined IMFs of the signal and𝑁 denotes length of the IMF; then statistical moments can be
computed by the following equations:

𝜇𝑡 = 1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝜇𝑡)2

𝜎𝑡 = √ 1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝜇𝑡)2

𝛽𝑡 = 1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝜇𝑡𝜎𝑡 )3 ,
(10)

where 𝑁 is the total number of samples of length of IMF; 𝜇𝑡
is the mean, 𝜎𝑡 is the standard deviation, and 𝛽𝑡 is skewness
of the corresponding IMF.

Figure 6 shows a plot of mean of EEG signal, whereas
Figures 7, 8, and 9 showplots of standard deviation, skewness,
and kurtosis for EEG signal, respectively.

3.4.2. Spectral Features. Empirical mode decomposition can
perform spectral analysis [29] for EEG signals. Amplitude of
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EEG signals increases in frequency domain during seizures,
which is useful for prediction. Therefore, we have also
extracted the features in frequency domain.

A conceptual understanding of empirical mode decom-
position is that it decomposes a single signal into a number
of Intrinsic Mode Functions (IMFs), which are obtained
by passing from filters having narrow pass bands. Spectral
moments have been extracted from IntrinsicMode Functions
(IMFs).These moments provide useful information of differ-
ent states of seizures. Most of the time, when applying EMD,
this spectral analysis is performed by using the calculation of
instantaneous frequencies (IF). However, it is also reported
that calculation of instantaneous frequencies has a physical
meaning only for mono components of signal.

It is no longer news that when EMD is applied on EEG
signalswe never getmonotonic component. As an alternative,
we have computed power spectral density (PSD) [30] for
extracting spectral moments. The discrimination power of
the PSD features can be visually analyzed by their respective
plots for three IMFs from the normal and pathological EEG
signals. The PSD can be calculated as follows:

𝑃 (𝑤) = 𝑁∑
𝑛=1

𝑟𝑦 [𝑛] 𝑒−𝑗𝑤𝑛, (11)
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Figure 9: Kurtosis plot of EEG signal.
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Figure 10: Spectral centroid plot of EEG signal.

where 𝑟𝑦[𝑛] represents the autocorrelation of 𝑦[𝑛], defined as𝑟𝑦[𝑛] = 𝐸(𝑦[𝑚]𝑦[𝑚 + 𝜏]).
However, autocorrelation is the correlation of the signal

with itself and time delay. In the above equation, 𝑦[𝑚]
represents the signal and 𝑦[𝑚 + 𝜏] represents its delayed
version. Visual analysis of the PSD of IMFs shows that the
statistics of the PSDcanbe used as relevant features for feature
extraction.

(1) Spectral Centroid. As the spectral variation of the IMF
differs for both normal and seizure subjects in EEG signals,
the variational coefficient can be used as a feature for classi-
fication of EEG signals. Equation (13) gives the formula for
computation of variational coefficient; 𝑃(𝑤) is the amplitude
of 𝑤th frequency bin in the spectrum. In (12), 𝐶𝑠 computes
spectral centroid of the signal. Figure 10 shows plot of spectral
centroid for EEG signal.

𝐶𝑠 = ∑𝑤 𝑤𝑃 (𝑤)∑𝑤 𝑃 (𝑤) . (12)

(2) Variational Coefficient. As the spectral variation of the
IMF differs for both normal and seizure subjects in EEG
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Figure 11: Variational coefficient plot of EEG signal.

signals, variational coefficient can be used as feature for
classification of EEG signals. Equation (13) gives the formula
for computation of variational coefficient; 𝐶𝑠 is the spectral
centroid. Both 𝐶𝑠 and power spectral density 𝑃(𝑤) are used
for computing variational coefficient 𝜎2𝑠 . Figure 11 shows plot
of variational coefficient of EEG signal.

𝜎2𝑠 = ∑𝑤 (𝑤 − 𝐶𝑠)2 𝑃 (𝑤)∑𝑤 𝑃 (𝑤) . (13)

(3) Spectral Skew. Spectral skew is the third spectral moment,
which measures the symmetry of the distribution of data.
The plot of spectral skew of EEG signal shows that there
is a significant change that occurs when in different states
of seizure. Therefore, spectral skew can be a useful feature
for prediction of epileptic seizure of EEG signal. Spectral
skewness 𝛽𝑠 can be computed by using spectral centroid 𝐶𝑠,
variational coefficient 𝜎𝑠, and power spectral density 𝑃(𝑤)
in (14). Figure 12 shows plot of spectral skewness of EEG
signal.

𝛽𝑠 = ∑𝑤 ((𝑤 − 𝐶𝑠) /𝜎𝑠)3 𝑃 (𝑤)∑𝑤 𝑃 (𝑤) . (14)

3.5. Combined Feature Set. First, four statistical moments
and three spectral moments have been extracted from IMFs
and combined into a single feature vector, which is used for
classification.

3.6. Classification of Preictal and Interictal States. As we have
already discussed that for predicting epileptic seizures it is
important that we detect the start of preictal state, which
shows that seizure is going to occur after few minutes,
we need to classify preictal and interictal states of seizure.
We have performed classification on features that we have
extracted from the window of 1 second. The preictal state is
detected where three samples are classified as preictal state
samples.
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Figure 12: Spectral skewness plot of EEG signal.
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Figure 13: Comparison of classifiers.

3.7. Classifier Selection. We have extracted some temporal
features from ictal and nonictal state and performed a
comparison for suitable selection of a classifier.

Three classifiers have been applied: 𝑘-nearest neighbor
classifier, naı̈ve Bayes, and Support Vector Machines. After
performing the comparison of three different classifiers,
Support Vector Machine has been selected for prediction
of epileptic seizures because it performs better in terms of
sensitivity. Figure 13 shows comparison of sensitivity of three
different classifiers.

4. Results

For the selection of a suitable classifier, we have performed a
classification of the ictal state with rest of states of seizure.
Support Vector Machine is chosen as a classifier due to its
superior performance in terms of sensitivity. After selection
of classifier, we have applied our model for prediction of
epileptic seizures on CHB-MIT dataset that contains EEG
signals recordings of several hours for 24 patients of 3–19
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Table 2: Comparison of prediction time and sensitivity.

Model Dataset EEG signals type Number of subjects Number of seizures Avg. prediction time (min.) Sensitivity (%)
Teixeira et al. [13] EPILEPSIAE Scalp EEG 227 87 15.8 73.5

Zandi et al. [16]
VGH Scalp EEG 17 86 21.48 91.11

CHB-MIT Scalp EEG 03 19.8 83.81
Proposed model CHB-MIT Scalp EEG 24 84 23.61 92.23
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Figure 14: Comparison of prediction time and sensitivity.

years of age having 84 seizures, and the data is sampled at
the sampling rate of 256Hz. We have selected only those
sessions from datasets which have seizure onset, at least after
20 minutes from start of the session.

We have computed average anticipation time for 84
sessions only from a complete CHB-MIT dataset. We have
computed average prediction time of epileptic seizure as
23.48 minutes, whereas maximum prediction time has been
observed as 33.46 minutes before the onset of the seizure.
Average sensitivity has been observed as 92.23% and speci-
ficity as 93.38%.

Figure 14 and Table 2 show a comparison of results
generated by our proposedmodel and those by other models.
It is quite evident from the comparison that our model
performs better in terms of both sensitivities and anticipation
time as compared to Zandi et al. [16] and Teixeira et al. [13].

5. Conclusion and Future Work

In this research, we have used the CHB-MIT dataset that
was recorded by placing electrodes on scalp of subjects
to predict epileptic seizure. We have tested our proposed
model on the dataset, and it has been shown in results that
our model performs better in terms of both sensitivity and
average prediction time as compared to other models for

prediction of epileptic seizures. After applying the proposed
model on the dataset, on average we have predicted epileptic
seizures 23.6 minutes before the start of the onset of a seizure.
Therefore, with the help of our proposed model, epilepsy-
affected patients will get more time for proper medication
required for preventing the seizure before it actually occurs.
We have also observed maximum prediction time of 33.46
minutes on the dataset.

In the future, preprocessing of the EEG signal can be
further improved to get an increased sensitivity of seizure pre-
diction. Other preprocessingmethods can be tried, including
those hybrid preprocessing methods and those that come
with adaptive window sizes [31]. Moreover, we can also
develop an online system for prediction of epileptic seizures.
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